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Abstract. We obtain the logarithmic corrections to the dynamic response function and nuclear
magnetic resonance (NMR) T1- and T2G-rates in the spin-1/2 antiferromagnetic Heisenberg chain
using the perturbative renormalization group for the leading irrelevant operator. The result is
compared with NMR experiments on Sr2CuO3.

Quantum spin chains have attracted considerable interest for a long time, due to both the
unconventional physics of the 1D materials and the sophisticated theoretical methods used in
the analysis of the problem. In particular, it is well known [1] that the antiferromagnetic spin-
1/2 XXZ-chain is critical for Jx > Jz (the two exchange constants), and the spin correlators
at T = 0 decay as a power law with distance. The critical theory can be mapped onto a theory
of free bosons. For Jx < Jz the system acquires a spin gap. At the quantum critical point,
the Heisenberg XXX-chain, the spin-correlation function has logarithmic corrections to the
free theory coming from the leading irrelevant operator, which becomes marginal. Thus, the
asymptotic power-law behaviour of the correlator at long distances is modified [2, 3]. The
staggered component of the spin–spin correlator has the following form:

〈Sz(r)Sz(0)〉 = (−1)rD

√
ln(r/r0)

r
(1)

where the non-universal coefficient D = 1/(2π)3/2 has been determined from the Bethe
ansatz [4, 5].

Logarithmic corrections in the SU(2)-invariant models are very well known. For example,
an RG calculation of the logarithmic corrections up to two loops was carried out for the fermion
model with backward scattering [6], the sine–Gordon model [7], and the SU(2) Gross–Neveu
model [8]. Logarithms appear in every physical property of the spin-1/2 Heisenberg chain as
a result of the marginally irrelevant operator. They were first found in the seminal papers of
Yang and Yang [9], who calculated 1/ln(H) corrections to the magnetization using the Bethe
ansatz (see also reference [10]). Higher-order two-loop calculations of the ln(ln(H))/ln2(H)

corrections to χ(H) were performed by Schlottmann [11, 12]. Also well known are the
temperature-dependent 1/ln(T ) corrections to the bulk spin susceptibility [13], and T/ln3(T )

corrections to the specific heat [14].
The leading logarithmic behaviour of the staggered spin-correlation function has been

known for a long time [2,3]. However, numerical [15–20] and experimental [21,22] tests of it
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have appeared only recently. To fit the numerical data, various phenomenological expressions
were used [15, 18, 19, 23]. As was first pointed out by Nomura [24], using the RG scheme
up to two loops greatly improves the asymptotic behaviour of the finite-size correction to
the energy gap. For the equal-time correlator in a finite-size chain at T = 0, this fact has
been recently proven in references [4, 25], where the two-loop expression was derived and
compared with numerical DMRG results. In what follows we use a similar approach to obtain
the staggered dynamic spin correlator, up to two-loop order in the perturbative renormalization
group scheme. The imaginary part of the staggered dynamic spin susceptibility is observed
in inelastic neutron scattering experiments, and determines the relaxation time T1 in nuclear
magnetic resonance (NMR) experiments. Another NMR relaxation time, T2G, is found from
the real part of the spin susceptibility.

Let us now show how the logarithms appear in the time-dependent staggered spin-
correlation function. For this purpose it is more convenient to work in real space and imaginary
time, so that one can easily apply bosonization and conformal invariance. One should then
Fourier transform and analytically continue the result to real frequencies. At low temperatures
and large distances we can use the continuum approximation. The theory can be written in
terms of free bosons defined on a circle. In case of the SU(2)-symmetric Heisenberg model
it is more convenient to use non-Abelian bosonization [2], which respects the symmetry. The
action for the SU(2)-symmetric matrix field gα

β includes the Wess–Zumino term with coefficient
k = 1. The Hamiltonian density takes the following form:

H = H0 − (8π2/
√

3)λJL · JR (2)

whereH0 is the Hamiltonian density for a free boson, and JL,R are left and right SU(2) currents:

JL ≡ −i

4
√
π

tr[g† ∂−g σ] JR ≡ i

4
√
π

tr[∂+g g†σ]. (3)

The spin operators can be written in non-Abelian bosonization notation as

Sj = (JL + JR) + constant × i(−1)j tr[gσ] (4)

so the correlation function has uniform and staggered terms:

χ(r, τ ) = 〈Sz
0S

z
r 〉 → χu(r, τ ) + (−1)rχs(r, τ ) (5)

where τ is imaginary time. Both terms vary slowly on the scale of the lattice spacing, and
correspond to different Green’s functions in the continuum theory. The staggered susceptibility,
which is enhanced near wave vector q = π , is observed by means of inelastic neutron scattering
and NMR:

χs(r, τ ) ∝ 〈tr(σzg)(r, τ ) tr(σzg)(0)〉. (6)

It is not difficult to determine the contribution of the free boson with radius R = 1/
√

2π
[26]—the conformally invariant WZW model on a circle of length β = 1/T in the imaginary-
time direction. Indeed, g has scaling dimension 1/2, so for an infinite system one writes

〈tr[g(z, z̄)σz] tr[g(0)σz]〉 = 1√
zz̄

(7)

where z = τ + ix, z̄ = τ − ix. Here we have chosen a convenient normalization for the
operator g. Here and below we use the units c = kB = h̄ = 1. Making a conformal trans-
formation from the infinite plane to the cylinder, one easily finds

〈tr[g(z, z̄)σz] tr[g(0)σz]〉 = πT√
sin(πT z) sin(πT z̄)

. (8)
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The result for real time is given by a straightforward analytic continuation, τ = it . To obtain
χ ′′(q, ω), one simply performs a Fourier transform. Integration over q in the limit ω → 0
gives the NMR T1 [27]. These results are, of course, well known.

In order to obtain the logarithm, one has to go further [2, 3] and carry out a perturbative
expansion in the leading irrelevant operator in equation (2), and then collect the diverging terms
in a renormalization group (RG) scheme [4, 25]. To the first order in the leading irrelevant
operator the correction can easily be calculated. The details of a similar calculation for this
diagram for a finite-size chain at T = 0 can be found in reference [25]. The first-order
correction has the following form:

δ〈tr[g(z, z̄)σz] tr[g(0)σz]〉 = π2λ0T√
3 sin[πT z] sin[πT z̄]

×
{

ln

[
sin[πT z] sin[πT z̄]

(πT /T0)2

]
+ constant

}
. (9)

Here λ0 is the ‘bare’ coupling constant for a theory defined with a cut-off at T = T0.
We can now sum the leading logarithmic contributions using the standard Callan–

Symanzik RG equations for the staggered spin-correlation function χs(r, τ, T , λ):

[−∂/∂ ln T + β(λ) ∂/∂λ + 2γ (λ)]χs(r, rT , τT , λ) = 0 (10)

where β(λ) is the beta function for the coupling constant λ in equation (2):

dλ

d ln T
= −β(λ) (11)

and γ (λ) is the anomalous dimension. In equation (10) the T -derivative acts only on the first
argument of χs ; rT and τT are held fixed. The solution of equation (10) can be written as
follows:

χs(r, τ, T , λ0) = exp

(
−2

∫ λ(T )

λ0

γ [λ′]
β(λ′)

dλ′
)
F [λ(T ), rT , τT ] (12)

where λ0 ≡ λ(T0) is the ‘bare’ coupling—a coupling at the energy cut-off scale T0;
F [λ(T ), rT , τT ] is an arbitrary function of the effective coupling constant at scale T , λ(T ).

Since the coupling constant flows to zero as T is decreased, one can use perturbative
expressions for γ (λ) and β(λ) to determine the long-distance asymptotics for the staggered
spin susceptibility. The universal terms in the perturbative expansion for the β-function [28]
and the anomalous dimension [2, 3] are known:

β(λ) = −(4π/
√

3)λ2 − (1/2)(4π/
√

3)2λ3 (13)

γ (λ) = 1/2 − (π/
√

3)λ. (14)

Thus the effective coupling is given by

1

λ(T )
= 4π√

3

{
ln()/T ) +

1

2
ln[ln()/T )]

}
+ O(1) (15)

where

) = constant ×
√
λ0e

√
3/(4πλ0)T0. (16)

Thus, we can rewrite the integral in equation (12):∫ λ(T )

λ0

γ (λ)

β(λ)
dλ = 1

2
ln

T0

T
+

1

4
ln

λ(T )

λ0
+ · · · . (17)
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In general, one can expand the staggered spin-susceptibility expression, equation (12), in
powers of λ(T ):

χs(r, τ, T , λ) = 1

r

√
λ0

λ(T )
exp

( ∞∑
n=1

an[λ(T )n − λn0]

) ∞∑
m=0

Fm(rT , τT )λ(T )
m. (18)

The coefficients an and the functions Fm(rT , τT ) can be determined from the perturbative
expansion in the leading irrelevant operator.

We can now improve using the RG the perturbative results equation (8) and equation (9).
This can be done by expanding equation (18) to first order in the bare coupling constant,
λ0, and comparing it with the perturbative calculations. Indeed, if we substitute λ(T ) from
equation (15) into equation (18), we easily find

F0(rT , τT ) = 1
F1(rT , τT ) = 1

4 ln[constant × sin(πT z) sin(πT z̄)]
(19)

where the constant is some non-universal constant. Also,

χs(r, τ, T , λ) = 1

(2π)3/2

[
πT

√
ln

)

T
+

1

2
ln

(
ln

)

T

)/√
sin(πT z) sin(πT z̄)

]

×
(

1 +
1

4 ln()/T )
ln[sin(πT z) sin(πT z̄)]

)
. (20)

This expression is our final perturbative result, which has to be Fourier transformed and
continued analytically to real frequencies. For this purpose it is more convenient to work
with the temperature-dependent anomalous dimension η(T ) instead of the form (20) with the
logarithms. To the same order in λ we can write, using the identity

A1+x ≡ exp[(1 + x) lnA] � A(1 + x lnA + o(x2))

valid at small x,

χs(r, τ, T , λ) = πT

(2π)3/2

√
ln

)

T
+

1

2
ln

(
ln

)

T

)
(sin(πT z) sin(πT z̄))−η(T )/2 (21)

where

η(T ) = 1 − 1
/(

2 ln
)

T

)
. (22)

The analytic continuation of equation (21) is then analogous to that in the case of a Luttinger
liquid, which is well known [26, 29–31]. We therefore only discuss quantities which can be
measured by means of inelastic neutron scattering and NMR. Continuing equation (21) to real
frequencies, we get

Im χ(q, ω) = 2η(T )−2

(2π)3/2πT
sin(πη(T )/2)

√
ln

)

T
+

1

2
ln

(
ln

)

T

)

× Im

{
B

(
i(ω − q)

4πT
+
η(T )

4
, 1 − η(T )

2

)

× B

(
i(ω + q)

4πT
+
η(T )

4
, 1 − η(T )

2

)}
(23)

where B(x, y) ≡ 0(x)0(y)/0(x + y) is the beta function. An immediate consequence of the
temperature-dependent anomalous dimension is that the correlation length acquires additional
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logarithmic temperature dependence, which can be observed in inelastic neutron scattering
experiments:

ξ−1 = πT

(
1 − 1

2 ln(T0/T )

)
. (24)

This also agrees with thermal Bethe ansatz calculations [32].
Let us now compute the nuclear relaxation rates. Nuclear spins are coupled to electron

degrees of freedom by the magnetic hyperfine Hamiltonian:

HHF =
∑
α,i,j

Aij
α IiαSjα. (25)

I is the nuclear spin, S is the electron spin, α enumerates spin projections for sites i and j .
We will use the following expressions [33] for calculating T1 and T2G:

1

T1
= 2kBT

h̄2

∫
dq

2π
A2

⊥(q)
Im χ(q, ω0)

ω0
(26)

(
1

T2G

)2

= p

8h̄2

[∫
dq

2π
A4

‖(q)χ
2(q) −

{∫
dq

2π
A2

‖(q)χ(q)
}2

]
. (27)

Here A‖(q) and A⊥(q) are the hyperfine couplings parallel and perpendicular to the easy axis
of the crystal, and ω0 is the nuclear resonance frequency, which is much smaller than any other
electron energy scale. The magnetic field is directed along the c-axis. The q-dependence is
smooth and arises from appropriate form factors. The susceptibility χ should, in principle,
include contributions from both the uniform and staggered spin fluctuations. However, simple
power counting [27] shows that the staggered component is dominant at small T . For the
purpose of comparison of our theory with experiment, it is convenient to define normalized
dimensionless NMR rates [34], which should be universal functions of T/J :

(1/T1)norm = h̄J

T1A
2
⊥(π)

(28)

(
√
T /T2G)norm =

(
kBT

pJ

)1/2
h̄J

A2
‖(π)T2G

. (29)

A complete calculation of the NMR relaxation rates gives

(1/T1)norm = 2D

√
ln

)

T
+

1

2
ln

(
ln

)

T

)(
1 +

ln 2

2 ln()/T )
+ O

[
1

ln2()/T )

])
(30)

(
√
T /T2G)norm =

√
I0D

4
√
π

√
ln

)

T
+

1

2
ln

(
ln

)

T

)

×
(

1 − C + 3 ln 2 + I1/(2I0)

2 ln()/T )
+ O

[
1

ln2()/T )

])
. (31)

Here D = 1/(2π)3/2 is the non-universal amplitude, C � 0.577 2157 is Euler’s constant,
while the integrals I0 and I1 are given by

I0 =
∫ ∞

0
dx

∣∣∣∣0
(

1 + ix

4

)/
0

(
3 + ix

4

)∣∣∣∣
4

� 71.2766

I1 =
∫ ∞

0
dx

∣∣∣∣0
(

1 + ix

4

)/
0

(
3 + ix

4

)∣∣∣∣
4

Re

[
7

(
1 + ix

4

)
+ 7

(
3 + ix

4

)]
� −259.94

(32)
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where 7(x) is the digamma function. The 1/ln()/T ) term could be incorporated to redefine
the cut-off) as in reference [4]. Thus, up to terms O(1/ln2()/T )) the temperature dependence
for 1/T1 or

√
T /T2G is actually given by the square root of the log and log log terms in

the numerator of equation (32). The ratio of the relaxation rates, however, is only weakly
temperature dependent. We find(

T2G

T1

√
T

)
norm

� 1.680

(
1 +

0.7632

ln()/T )

)
. (33)

To summarize, the new effects of the higher-order corrections in the leading irrelevant
operator to the dynamic spin susceptibility are, apart from the log log term in the common
factor

√
ln()/T ) + 0.5 ln[ln()/T )], the temperature-dependent anomalous dimension, and

logarithmic corrections to the correlation length. These only lead to an additional weak
O(1/ln()/T )) temperature dependence for the relaxation rates 1/T1 and 1/T2G, which can
be incorporated as a correction to the non-universal cut-off scale ). The relaxation rate
ratio (T2G/(T1

√
T )), however, filters out the common factor, and therefore picks up a weak

1/ln()/T ) temperature dependence, which we have calculated. We note that our result is
similar to the phenomenological expression used by Starykh et al [23]. There are, however,
important differences. Starykh et al [23] do not have the log log term, which turns out to
be the most important correction in this approximation. The 1/ln(T0/T ) weak temperature
dependence for the ratio of the relaxation rates was also not explicitly obtained in reference
[23]. Our theoretical results are in excellent agreement with experimental data of Takigawa
et al [22, 34] on Sr2CuO3, as shown in figure 1.

Figure 1. The NMR T1 and T2G/(T1T
1/2) versus T/J from Takigawa et al [34] fitted to our

expression, with ) = 5J .
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